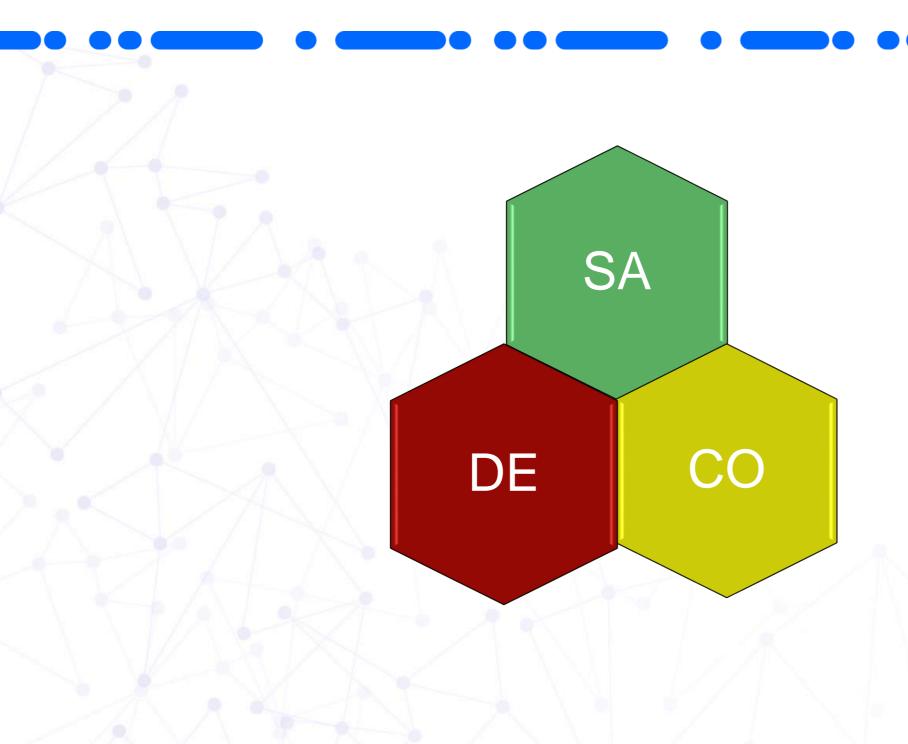
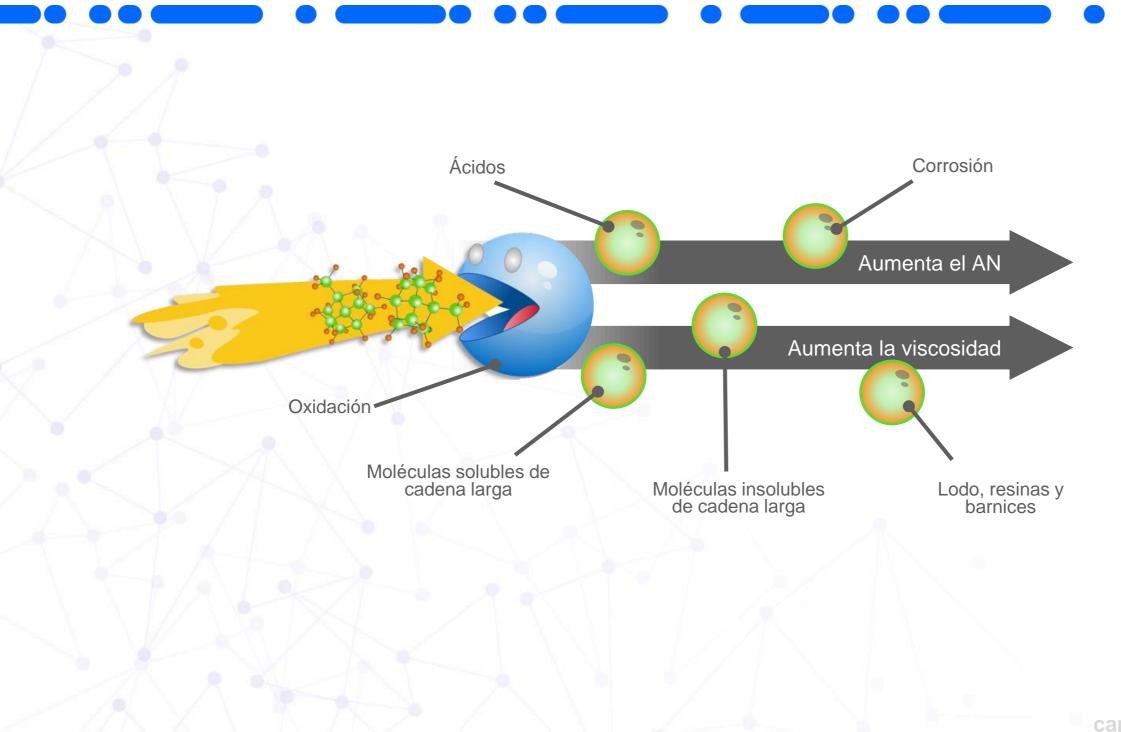


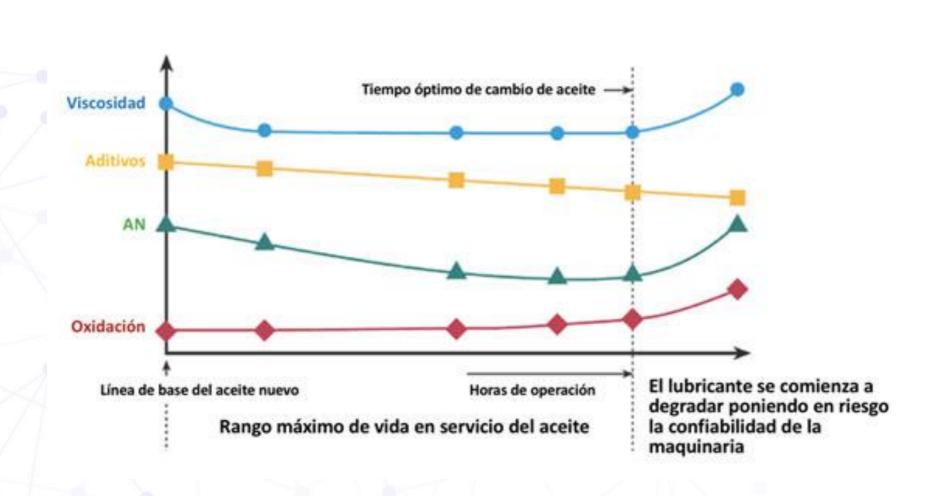
Italo M. Lui – Laboratorio Dr. Lantos Cristian Cagnoni - NCC 12/11/2021 – 10:30 AM

Aceite base – Degradación – Acidez – Aditivos antiDesgaste – anti-Oxidantes – anti-Corrosivos


Agua – Partículas – Fibras – Barniz Microscopía
– Origen de Contaminantes.

Espectrometría – Ferrografia – Tribología
Microscopía Electrónica: Origen del desgaste





Adquirida

Generada

Residente

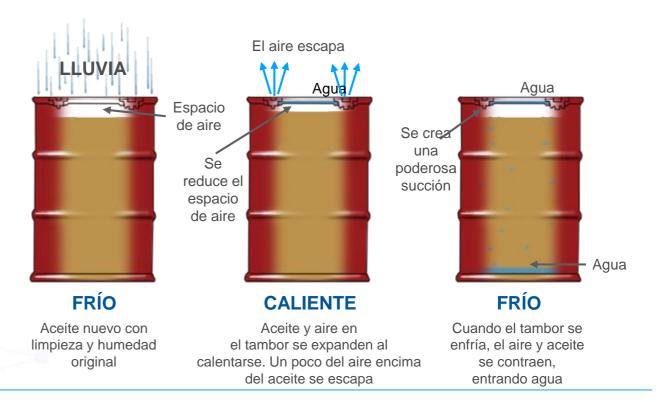
Adquirida

Sólida

Generada

Líquida

Residente


Cómo bloquear un tambor

El agua alrededor del tapón puede entrar al tambor

No hay agua alrededor del tapón que pudiera entrar al tambor

¿Qué está mal en esta imagen?

Un proveedor de lubricantes afirma que cuesta USD \$0.065/litro limpiar un aceite a ISO */14/11

*/21/18

*/20/17 */20/17 */23/20 */20/18 */28/21 */20/17 */20/18

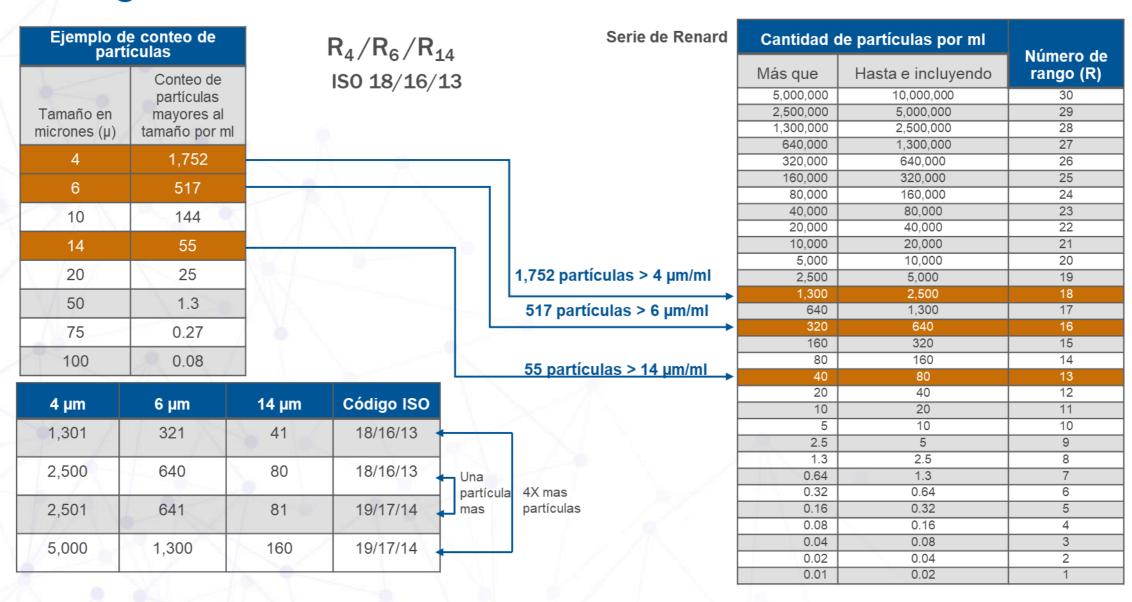
Compañías de lubricantes participantes en el estudio

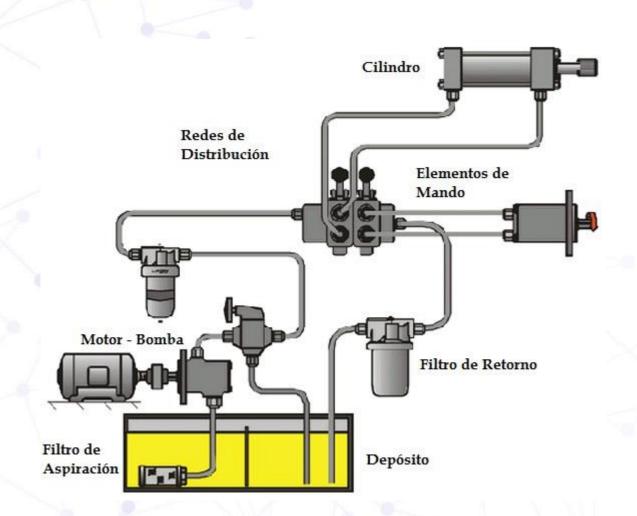
BP, ExxonMobil, Shell, ChevronTexaco, Valvoline y Castrol

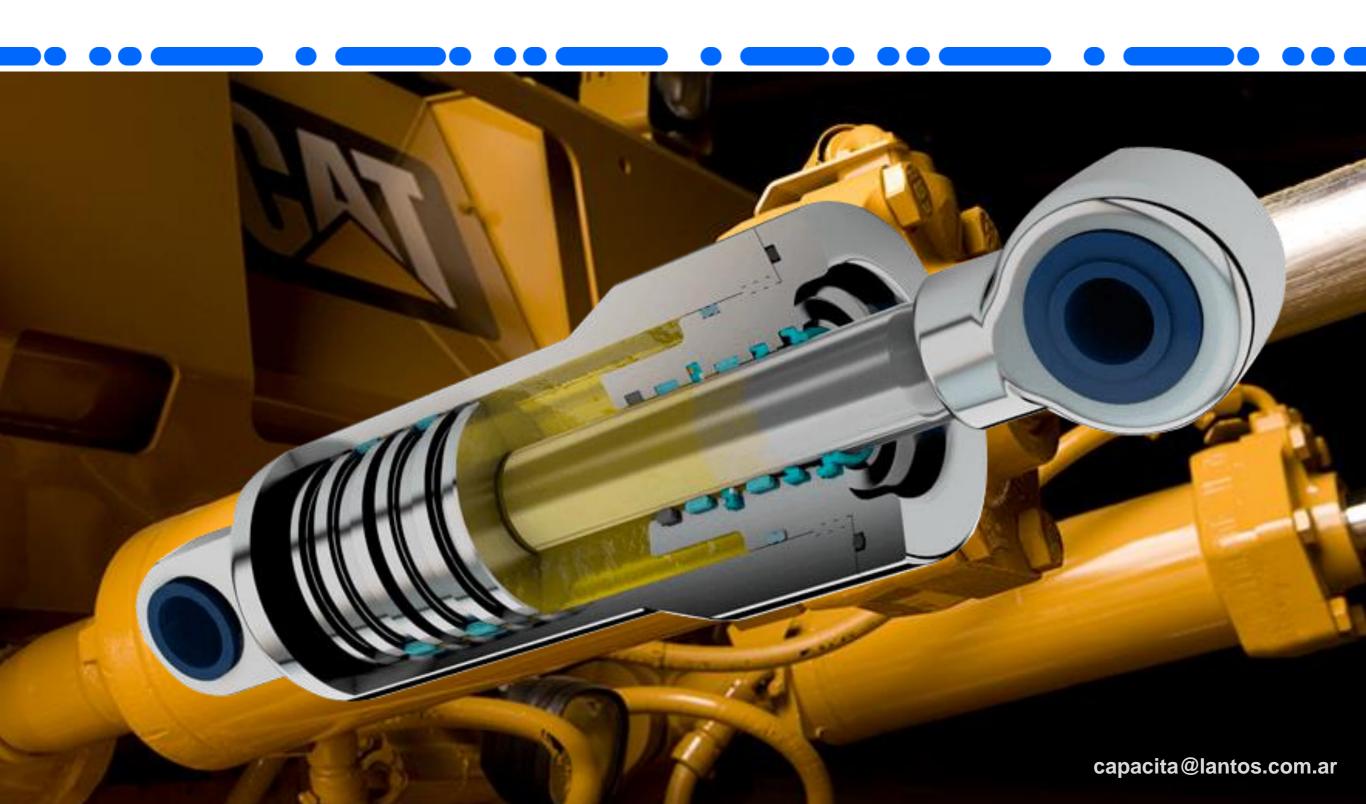
Tipos de productos

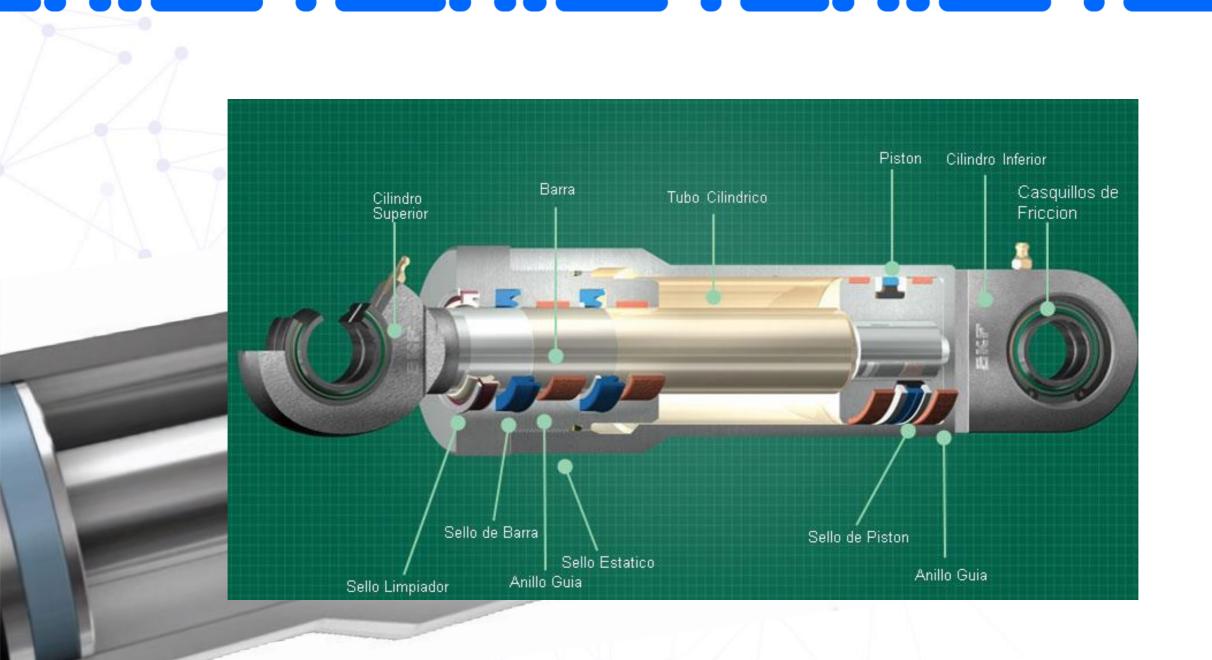
Fluidos hidráulicos, aceites de turbinas, circulación y motores de combustión interna

*/17/14 */21/18 */17/14 */20/17 */21/18 */20/17 */21/18 */21/18 */23/20 */17/14 */21/18 */14/11 */20/17 */14/11 */14/11 */18/15 */20/18 */21/18 */15/12 */20/17 */21/18 */23/20




Código de contaminación sólida ISO 4406:99

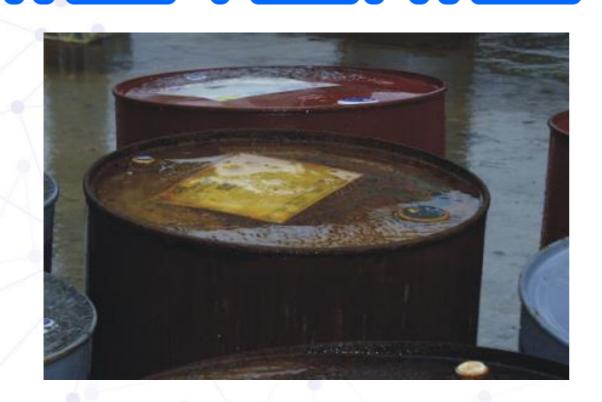


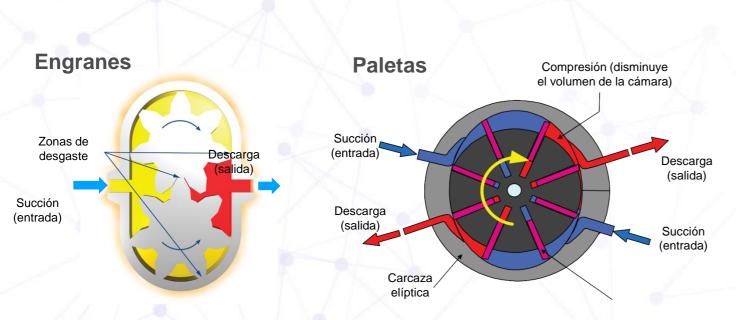


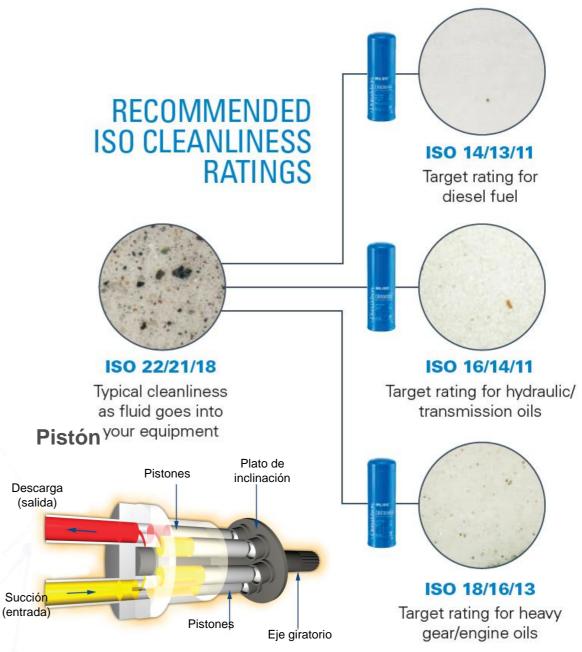
TECNOLOGÍA Y CULTURA DIGITAL, CONFIABILIDAD PARA EL MUNDO DEL MAÑANA

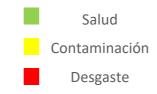
- •Micrones?
- •Beta?
- Caudal
- Capacidad
- Material

Contaminación en el fluido a filtrar (partículas/ml)	Contaminación en el fluido después del filtro (partículas/ml)	Tasa Beta	Porcentaje de eficiencia
	500,000	2	50
	50,000	20	95
1,000,000	13,000	75	98.7
	5,000	200	99.5
	1,000	1,000	99.9


- $\beta_{1\mu} = 2 (50.0\%)$
- $\beta_{211} = 10 \quad (90.0\%)$
- $\beta_{3\mu} = 50 \quad (98.0\%)$
- $\beta_{4\mu} = 75 \quad (98.7\%)$
- $\beta_{8\mu} = 200 (99.5\%)$
- $\beta_{12\mu} = 1,000 (99.9\%)$


- Datos del fabricante acerca de uno de sus filtros,
- Cuando mencione la tasa Beta se debe indicar el tamaño de partícula en micrones.
- Debe darse el valor de tasa
 Beta para diferentes tamaños de partículas.





DATOS ANALÍTICOS:

	Fe	Cr	Mo	Al	Cu	Pb	Sn	Ag	Ni	V	Ti	Si	Na	В	Mg	Ca	Ba
1	78	10	221	25	35	27	11	<1	<1	<1	<1	69	4	<1	17	3251	<1
2	19	1	214	4	12	10	<1	<1	<1	<1	<1	10	8	<1	12	3005	<1
3	11	1	217	3	11	8	<1	<1	<1	<1	<1	7	6	<1	9	3102	<1
4	11	1	220	4	13	10	<1	<1	<1	<1	<1	7	7	<1	13	3301	<1

A	Zn	Р	Hollín	Comb	Agua	Glicol	Ох	NOx	SOx	PQI	TBN	TAN	FP	V40	V100	IV
	1394	1357	<0.0	<2	<0.05	ND	11.7	6.1	18.8	114	10.7	-	>210	104.1	14.01	136
	1424	1331	0.2	<2	<0.05	ND	17.2	9.1	21.4	4	8.2	-	>210	118.4	15.31	135
	1110	1239	0.1	<2	<0.05	ND-	14.5	7.7	21.4	5	8.6	-	>210	113.9	15.3	141
	1250	1240	0.0	<2	<0.05	ND	14.3	7.1	21	0	8.5	-	>210	114.8	15.22	138

Cuando sea posible, almacene los tambores en interiores, horizontalmente, no apile más de dos tambores

Almacenamiento temporal en exteriores

Tarima de contención de derrames

Los tapones de ventilación y despacho deberán estar en las posiciones del reloj de las 3 y las 9

Nunca los almacene directamente sobre la tierra, ni donde pueda ingresar agua, ni a los rayos directos del sol

Tambores

Alternativamente, almacene en interior en posición vertical, utilice tarimas, no apile más de dos tarimas de altura, utilice cubiertas para tambores

Tipo gorro de baño

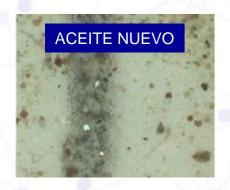
Tipo cierre a presión

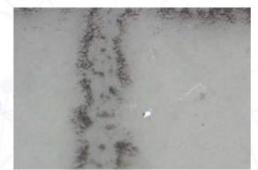
Tipo velcro

• La contaminación es responsible del 80% del desgaste que conduce a la falla mecánica

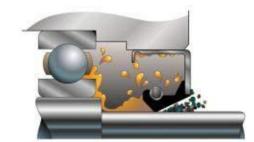
 La contaminación afecta a la lubricación reduciendo la capacidad del lubricante de control de fricción, desgaste y corrosión

 Costo de remover la contaminación = 10X costo de prevenir la contaminación





Contaminación ingresada


- •Recarga de lubricante
- •Atmósfera: ingreso a través de
- Sellos
- Respiraderos
- Tapas
- Fuelles
 - •Combustión: hollín, cenizas, combustible contaminado

"El aceite nuevo puede ser una de las peores fuentes de contaminación por partículas y por agua. El código 25/22/19 es un código ISO común para el aceite nuevo, que no es adecuado para los sistemas hidráulicos o de lubricación. Una buena meta de limpieza para el aceite nuevo es 16/14/11." - *HyPro*

Fuentes: HyPro

Cantidad promedio de partículas > 10 micrones que ingresan a un sistema, desde todas las fuentes, por minuto								
Equipo móvil 100 millones – 10 billones								
Instalaciones de manufactura	1 millón – 100 millones							
Instalaciones de montaje	100.000 – 1 millón							

Component life extension due to additional filtration

We compare two systems that have a pump with a flow of 250 l/min running 24 hours a day 7 days a week. We take a 100 ml oil sample, which shows the ISO cleanliness level of the first system is ISO 23/21/18 and the cleanliness level of the second systems is ISO 16/14/11.

In table 1 we compare the number of particles between the systems based on the oil sample.

Number of particles in 100 ml of sampled fluid							
	System 1	System 2					
	ISO 23/21/18	ISO 16/14/11					
Particles larger than 4 µm	4.000.000 - 8.000.000	32.000 - 64.000					
Particles larger than 6 µm	1.000.000 - 2.000.000	8.000 - 16.000					
Particles larger than 14 µm	130.000 - 250.000	1.000 - 2.000					

Table 1

Based on this example each year 4375kg of dirt passes through the pump of the first system. The expected service life of this pump will be approximately 2 years. In the second system only 25kg of dirt passes through the pump each year. To calculate the life extension factor of the systems we use table 2. The expected service life of this pump will be more than 14 years.

CURRENT MACHINE	LIFE EXTE	NSION FAC	TOR											
CLEANLINESS ISO 4406	2	3	4	5	6	7	8	9	10					
28/26/23	25/23/21	24/22/19	23/21/18	22/20/17	22/20/17	21/19/16	21/19/16	20/18/15	20/18/15					
27/25/22	25/23/19	23/21/19	22/20/17	21/19/16	21/19/15	20/18/15	20/18/14	19/17/14	19/17/14					
26/24/21	23/21/18	22/20/17	21/19/16	21/19/15	20/18/14	19/17/14	19/17/13	18/16/13	18/16/13					
25/23/20	22/20/17	21/19/16	20/18/15	19/17/14	19/17/13	18/16/13	18/16/12	17/15/12	17/15/11					
24/22/19	21/19/16	20/18/15	19/17/14	18/16/13	18/16/12	17/15/12	16/14/11	16/14/11	16/14/10					
23/21/18	20/18/15	19/17/14	18/16/13	17/15/12	17/15/11	16/14/11	16/14/10	15/13/10	15/13/10					
22/20/17	19/17/14	18/16/13	17/15/12	16/14/11	15/13/11	15/13/10	15/13/9	14/12/9	14/12/8					
21/19/16	18/16/13	17/15/12	16/14/11	15/13/10	16/13/9	14/12/9	14/12/8	13/11/8	13/11/8					
20/18/15	17/15/12	16/14/11	15/13/10	14/12/9	14/12/8	13/11/8	-	-						
19/17/14	16/14/11	15/13/10	14/12/9	14/12/8	13/11/8	-	-	-						
18/16/13	15/13/10	14/12/9	13/11/8	-	-	-	-	-						
17/15/12	14/12/9	13/11/8	-	-	-	-	-	-						
16/14/11	13/11/8	-	-	-	-	-	-	-						
15/13/10	13/11/8(1)	-	-	-	-	-	-	-						
14/12/9	13/11/8四	-	-	-	-	-	-	-						
(1) Life Extension=1,8					(2) Life Exter	nsion Factor=	1,45							

Example

No. of machines: 20

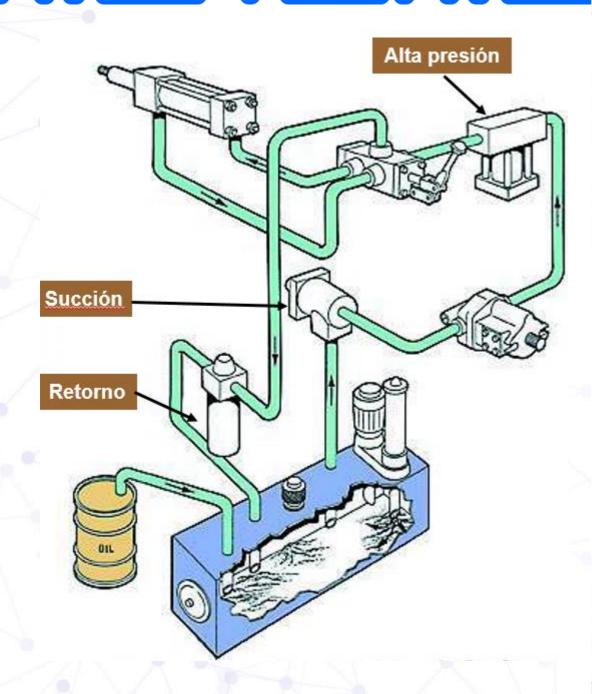
Operating time: 5.000 hrs/year
Machine costs: 40 euro/hour
Labor costs: 35 euro/hour
Total downtime: 10.000 hours

Downtime caused by hydraulic failure: 35%

If we calculate total downtime costs without additional filtration:

Downtime caused by hydraulic	35% of 10.000 h	3.500 h
failures		
80% of all hydraulic failures	0% of 3.500 h	2.800 h
caused by poor fluid conditions		
Machine downtime costs	2.800 h * €40	€ 112.000
Labor costs for repairs	950 h * €35	€ 33.250
Total downtime costs	€ 112.000+€33.250	€ 145.250

By using RMF Systems filtration solutions we can prevent 80% of all poor fluid conditions related failures.


Superior filtration reduced	80% of 2.800 h	2.240 h
downtime		
Total poor fluid condition	2.800 h - 2.240 h	560 h
related downtime		
Machine downtime	560 h * €40	€ 22.400
Total downtime costs with	€22.400 + €6.650	€ 29.050
superior filtration		

This shows that you can save approximatly € 116.200 each year by using additional filtration.

System filtration

Suction filtration

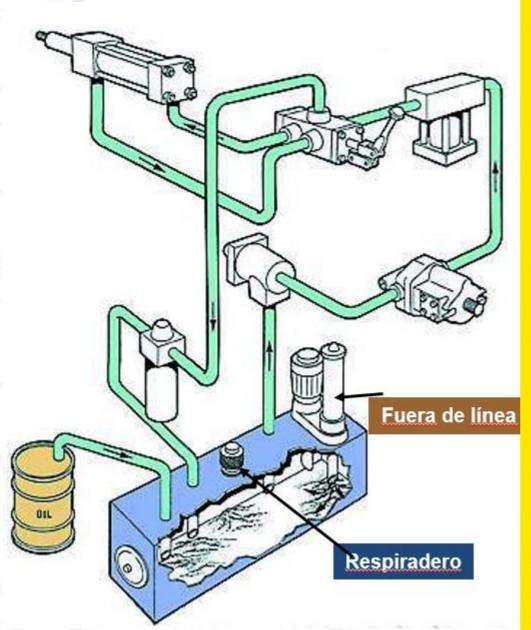
Suction filtration prevents the ingress of large particles (150 - 200 μ m) from the fluid reservoir into the system's circuit and is a basic form of filtration that doesn't contribute to the cleanliness level. Suction filters are usually placed between the pump and the inlet pipe with flanges.

Pressure filtration

Pressure filtration has a typical filter fineness between 3 and 20µm and can be used to protect the whole system, part of the system or just a component immediately downstream of the pump.

Return filtration

Return filtration is the most common form of fluid filtration. Return filtration takes place on the return line, in or on the hydraulic reservoir just before the fluid returns to the reservoir.



capacita@lantos.com.ar

Additional filtration

Bypass filtration

Bypass filters act as a kidney loop, draining oil from the main system. After oil is been filtered it returns to the system oil reservoir. The amount of oil extracted to be filtered is insignificant ensuring the filtration won't affect the operation of the main system. By using elements with different filter fineness higher fluid cleanliness can be achieved.

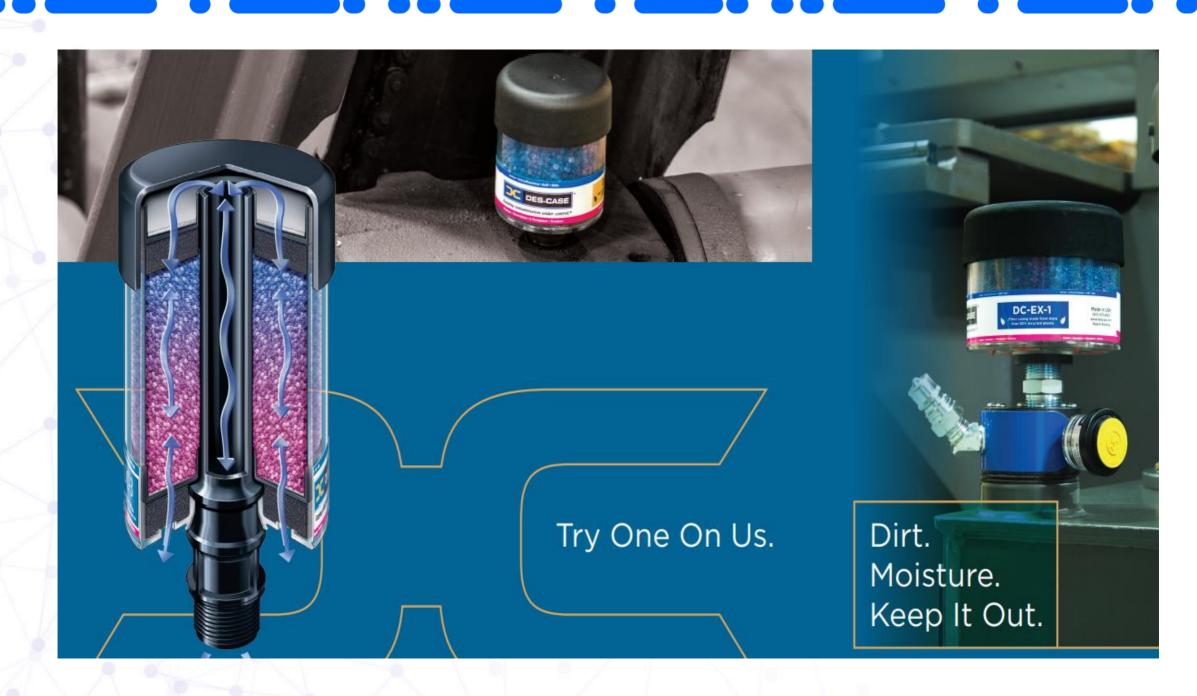
Offline filters

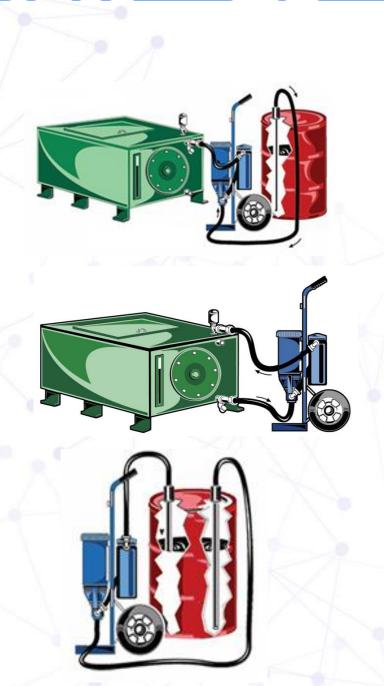
With offline filtration oil is extracted from the main system by an external pump, which makes it possible to filter the oil even when the main system in not in operation. Changing filter elements is made easy and can also be done witout interrupting the main system.

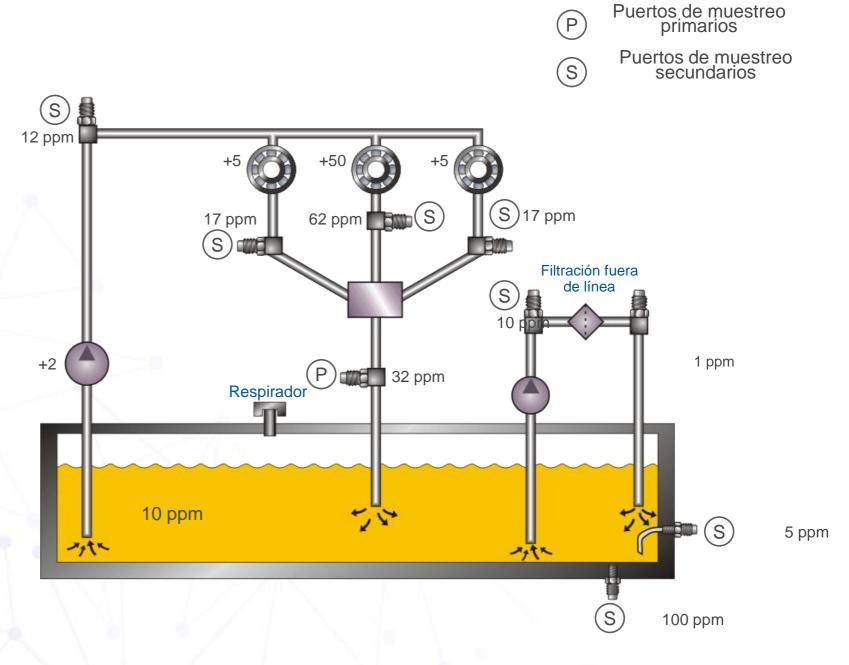
Air filters

Air filters clean the air before it enters the oil reservoir.

This air can be highly contaminated due to the (dusty) environment. Only a limited number of air filters are capable of removing both water and solid particles from the air, which significantly reduces the oxidation process.







IMUCHAS GRACIAS!